بسم الله الرحمن الرحيمالسلام عليكم ورحمة الله وبركاتهالاتصالات بالألياف البصرية:تعود تجارب إستخدام الضوء في الاتصالات إلى عام 1880م عندما أجرى مخترع الهاتف ؛ألكسندر جراهام بل تجربة نقل الصوت من خلال الضوء بواسطة جهاز ابتكره لهذه الغاية وتم نقل الصوت بهذه الطريقة مسافة 200 متر. وكان هذا الجهاز يتألف من مرآة هي عبارة عن لوح معدني رقيق عاكس مرتبطة بلاقطة صوت تقوم ذبذبات الصوت بضبط شعاع الضوء (ضوء الشمس في هذه التجربة) وأمكن استقبال الضوء بواسطة خلية حساسة للضوء من مادة السلينيوم واستعادة الإشارة الصوتية منها على ب عد 200 متر وسمي إبتكاره هذا بالهاتف الضوئي.هذه الطريقة لم تمكن صاحبها من الإستفادة منها كما حدث للهاتف نتيجة ما تعانيه من تغيرات الأحوال الجوية مثل هطول الأمطار أو الغبار كما أنها عرضة للإكتشاف والتصنت. ولم يتعدى الهاتف الضوئي مرحلة التجارب لعدم وجود مصدر ضوئي ذو كفاءة جيدة بل استخدم الشمس وعدم وجود وسط ناقل قليل الفقد بل استخدم الهواء. وانتظرت هذه التجارب ثمانين عاما أخرى قبل أن تتخطى مرحلة مهمة وهي إبتكار الليزر عام 1960م فالليزر LASER: Light Amplification by Stimulated Imition Radiation يوفر مصدر إشعاع ضوئي ضيق الحزمة عالي الطاقة يغذى بمصدر كهربائي مما شكل وسيلة مناسبة لحمل المعلومات.إلا أن تجارب إستخدام إشعاع الليزر في الاتصالات في الهواء لم تكن ممكنة التطبيق عمليا وعلى نطاق تجاري لأنها يمكن أن تسبب العمى عند مواجهة العين البشرية حزمة إشعاع الليزر.لكن إبتكار جهاز الليزر حفز الباحثين لإستخدامه في الاتصالات من خلال إستخدام الزجاج كوسط ناقل إلا أن التجارب التي أجريت كانت تواجه مشكلة كون نقاوة الزجاج المتوفر في ذلك الوقت لم تكن كافية لتوفير إتصالات عملية لمسافات طويلة.وفي عام 1970م ابتكرت إحدى الشركات المتخصصة بتقنية الزجاج كابل ليف بصري يساوي 4 ديسبل/كيلو متر أي أن طاقة الإشارة الضوئية المرسلة عبر هذا الكابل تنخفض إلى نصف مقدارها بعد 800 متر.وبالرغم من أن هذا المقدار يعد سيئا في الوقت الحاضر إلا أنه ع د نقلة نوعية في هذا المجال في ذلك الوقت.وبالإضافة إلى ثنائي الليزر فقد تم إبتكار الثنائي الباعث للضوء Light Emitting Diod واستخدم في الشبكات القصيرة مثل الربط بين أجهزة الحاسوب وشبكات المعلومات المحلية وأنظمة التحكم في الطائرات.الليف البصري:يمكن تعريف الكابل البصري بكونه سلك رفيع جدا من الزجاج النقي جدا يتألف من لب تحيط به قشرة خارجية مصنوعة من نفس الزجاج لكنها تختلف عنه بإضافة بعض المركبات الكيميائية تجعل معامل الإنكسار لها أقل بقليل من اللب كما تحاط القشرة بمادة بلاستيكية لحماية الليف البصري من المؤثرات الميكانيكية.وطبيعة تحول معامل الإنكسار تقسم الكابلات البصرية إلى نوعين: الأول; يتغير فيه معامل الإنكسار بصورة مفاجئة بين القشرة واللب ويدعى بكابل معامل القفزة Step index والنوع الثاني; والذي يتغير فيه معامل الإنكسار بصورة تدريجية في اللب والقشرة ويدعى بكابل المعامل المتدرج Graded index وشاع هذا النوع في بداية الثمانينات لسهولة صنعه ولكونه ذو فقد أقل من النوع السابق المماثل له في القطر المصنع في ذلك الوقت.وفي نهاية الثمانينات تم تصنيع نوع جديد من كابل معامل القفزة ذو فقد أقل كما أن الضوضاء المتولدة فيه أقل من كابل العامل المتدرج وتأخر صنع هذا النوع من الكابل لكونه ذا لب بقطر 102 مايكرون بينما يكون قطر اللب بين 20050 مايكرون مناسبا للنوع المتدرج وأصبح النوع الجديد هو المؤهل للإستخدام في إتصالات الألياف البصرية للمسافات البعيدة.ومن خلال البحوث والدراسات التي تم إجرائها لإختيار المدى المناسب لإستخدامه في الاتصالات البصرية وخاصة من ناحية إمتصاص الزجاج فقد لوحظ إمتصاص الزجاج للموجات الضوئية المرئية وفوق البنفسجية وتحت الحمراء الواطئة بدرجة أكبر. ولوحظ أن المدى بين 0.5 مايكرون الواقع في منطقة الآشعة تحت الحمراء هو أفضل مدى يحقق أقل فقد.وفي نفس هذا المدى هناك عدة مديات بأطوال موجيه مختلفة تستخدم لإتصالات الألياف البصرية فقد بدأ أولا إستخدام مدى 0.85 مايكرون ثم تم إستحداث المدى 1.3 مايكرون وأخيرا مدى 1.6 مايكرون بعد تطوير هذا النوع من الكابلات وتم إختيار هذه المديات لكونها تمثل أطوال موجيه يكون فيها الكابل أقل ما يمكن.مباديء الاتصالات الرقمية:تشغل مركبات الصوت البشري الترددات دون 4كيلو هرتز وعند زيادة المدى إلى أكثر من ذلك نحصل على صوت أكثر جودة لكن زيادة المدى أكثر من 4 كيلوهرتز غير عملي لدوائر الهاتف ويمكن تخفيض المدى عن 4 كيلوهرتز وسماع الصوت والتعرف على هوية المتكلم إذا كان هذا التخفيض في الجودة مقبولا وتقل القدرة على التعرف على هوية المتكلم عند تخفيضها أكثر دون أن يكون لها تأثير على فهم الكلام البشري.وجميع أنظمة الإتصالات بالألياف البصرية رقمية بينما تستخدم أساسا لنقل الصوت والصوت هو إشارة تناظرية Analogue وعند تحويله رقميا فإن معدل المعلومات يعتمد على معدل أخذ العينات Sampling وطبيعة التشفير وعادة ما يكون معدل أخذ العينات ضعف أقصى تردد مستخدم وهي بذلك 8000 عينة/ثانية وتم أخذ 8 مستويات للتعبير عن مقدار الإشارة وبذلك فإن معدل المعلومات في هذه الحالة هو 64Kb/s.إلا أن بعض الأنظمة المستخدمة حاليا لا تستخدم معدل المعلومات هذا وخاصة في الاتصالات البعيدة بل تستخدم 32Kb/s أو 9.6Kb/s وأقل من ذلك بالنسبة للإتصالات المتنقلة عبر الأقمار الصناعية.وشهدت الثمانينات بداية إستخدام الألياف البصرية في ربط مواقع الاتصالات القريبة وتم إستخدامه في الكابلات البحرية القصيرة مثل الكابل بين بريطانيا وهولندا والكابل الذي ربط جزيرة كورسيكا بالبر الفرنسي إلا أن عام 1988م شهد مد أول كابل إتصالات ضوئية بين ضفتي المحيط الأطلسي وكان بسعة 40000 مكالمة هاتفية في آن واحد أطلق عليه اسم TAT8.ومنذ ذلك الحين برزت أهمية الإتصالات بالألياف البصرية كوسيلة مشابهة في الهدف للإتصالات بالأقمار الصناعية خاصة بالنسبة للإتصالات الهاتفية إلا أن سوق الإتصالات لم يلبث أن استقر لكون الألياف البصرية والأقمار الصناعية لا تتنافس مع بعضها بصورة مباشرة ويتم استخدام كل منهما على نطاق واسع وغالبا ما يكمل أحدهما الآخر لإختلاف محاسن مميزات كل منهما.وفي عام 1992م تم تشغيل كابل الألياف البصرية المسمى TAT8 وهو يربط بين أسبانيا وفرنسا وبريطانيا ثم كندا والولايات المتحدة عبر الأطلسي وكان هذا الكابل بسعة 80000 مكالمة هاتفية في آن واحد ولم تقتصر فائدة الألياف البصرية على زيادة عدد المكالمات المنقولة بل أن المسافة بين مضخم وآخر إزدادت لتتراوح بين 10060كيلومتر بالنسبة للكابلات العابرة للمحيطات مما يزيد من فعالية النظام ويقلل تكاليف الصيانة.وحتى نهاية الثمانينات كان السبيل الوحيد في تعويض الفقد في طاقة الإشارة الضوئية في الكابل البصري تتم بواسطة تحويل الإشارة الضوئية إلى كهربائية وتضخيمها ثم إعادة توليد الإشارة الضوئية بواسطة الليزر مرة أخرى وهي طريقة لا تتسم بالمرونة وتفرض إستبدال جميع المضخمات عند الحاجة إلى تطوير النظام وزيادة سعته.وفي أواخر الثمانينات طور الباحثون في أماكن مختلفة من العالم طريقة جديدة لا تستخدم عملية الإلتفاف الكهربائية.هذه العملية تتضمن إضافة عنصر معدني نادر هو الأربيوم إلى لب الكابل البصري وتكمن هذه الطريقة في تركيب الليزر (ثنائي الليزر) في أماكن منتخبة من الكابل ليشع ضوء بطول موجه معين يجعل أيونات عنصر الأربيوم في الكابل البصري المطعم بهذا العنصر تتهيج إلى مستوى طاقة أعلى ثم تعود إلى مستوى الطاقة السابق لتشع فوتون صورة من الفوتون المنبعث من ليزر الإرسال وتتكرر العملية لتولد العديد من الفوتونات في منطقة معينة من الكابل لتعطي ما يسمى بالمضخم الضوئي. وتمتاز المضخمات الضوئية بقدرتها على التعامل مع معدل معلومات مختلف بالإضافة إلى أنواع مختلفة من أنواع التضمين.ويعد الكابل الذي يربط فلوريدا (الولايات المتحدة) ترينداد فنزويلا البرازيل والذي أطلق عليه إسم Americas1 أول كابل ضوئي يستخدم التقنية الحديثة وأصبح جاهزا للعمل منذ بداية عام 1995م.ويعد الكابل الذي يربط عدن ب يبوتي مارا بقاع خليج عدن والذي تم إكماله أخيرا والذي يتألف من ثلاثة أزواج من الألياف البصرية أطول كابل اتصالات بالألياف البصرية يتم تمديده بلا مضخمات ويبلغ طوله 270 كيلو مترا .وفي الحقيقة فإن السعة الكبيرة مع المعولية والخلو من تأثير الإشعاع الكهرومغناطيسي والذي تحدثه الأشكال الأخرى من موجات الإتصال وعدم القدرة على الإستراق تعد من الأمور المشجعة لإستخدام الإتصالات بالألياف البصرية.وتزداد إستخدامات الألياف البصرية وتتحول من المسافات البعيدة إلى مسافات أقصر فهي تستخدم الآن في الاتصالات وشبكات الحاسوب وأنظمة الملاحة والأنظمة العسكرية.وأصبحت أنظمة نقل الموجات البصرية تشكل نسبة مهمة من خطوط الإتصال العالمية الطويلة والشبكات المحلية الطويلة وشبكات الحاسوب في المراكز الضخمة وعلى نطاق محدود بعض شبكات الكابل التلفزيوني.تقنيات مستقبلية واعدة:عندما يتم نقل الإشارات الضوئية إلى مسافات بعيدة جدا فإن نبضات الإشارة الضوئية تتوسع نتيجة تشتت الضوء لذلك فقد بدأت العديد من الشركات المتخصصة بحوث لتحقيق طريقة تحفظ شكل النبضات الضوئية وهو ما أطلق عليه اسم سوليتون Solitons. إن تفسير ذلك معقد بعض الشيء لكننا يمكن أن نعطي تفسير مبسط لها وهو أن مصدرالضوء يبعث عدة أطوال موجيه من الضوء تنتقل بسرعة مختلفة عبر الكابل البصري وهو ما يسبب هذه الظاهرة وكل ماهو مطلوب هو الحصول على خواص في مادة الكابل ومضخماته تلغي ذلك السلوك. ولتحقيق ذلك هناك حاجة لجعل قمة في النبضة المرسلة وشكل للنبضة ويكون هذا النظام عاملا لنبضات ذات طاقة وطول موجه ثابتين.وبما أن هذه الإشارات عند إرسالها بواسطة كابل من هذا النوع يمكن تجميعها عبر تقنية التقسيم الزمني متعدد الوصول ؛تشترك مع أخرى بنفس طول الموجه« فإن ذلك سيؤدي إلى زيادة سعة الإرسال وقد أجرى باحثو مختبرات ؛بل« للهاتف تجارب على كابلات الإتصال بالألياف كهذه بطول 9000 كيلو متر وبمعدل معلومات 2.5جيجابت و32جيجابت لكابل طول 90كيلو مترا بنجاح لكن عملية تطبيق هذه التقنيات تحتاج مزيدا من البحوث والتجارباستخدام الليزر في الاتصالاتيمكن بواسطة تضمين (Modulation) شعاع الليزر توفير نطاق واسع من الموجات تناسب بعض أشكال الاتصالات وخصوصاً في تلك الوصلات التي تكون على خط البصر حيث يتم استغلال خاصية انتقال شعاع الليزر في خط مستقيم ومتماسك مما يجعل من الصعب على العدو التنصت عليه. يمكن للأمطار والسحب والدخان، والغبار أن تضعف الشعاع ولكن تأثير ذلك لا يؤثر في الاستخدامات المتخصصة وخصوصاً في الاتصالات الفضائية أو في المسافات القصيرة خلال الجو.يوفر عرض الموجة المتاح بواسطة الليزر توصيل البيانات بمعدل عال جداً. قامت شركة ماكدونالد دوجلاس (بوينج حالياً) بتطوير الجيل الأول من أجهزة الاتصالات البينية لصالح القمر الصناعي للاتصالات MILSTAR والذي يستخدم الليزر ذو الطاقة 250 وات وله مدى يصل إلى 84000 كيلومتر. قامت هيئة الدفاع ضد الصواريخ البالستية (BMDO) بتمويل وحدة إرسال واستقبال من المتوقع أن تطير مع مركبة الفضاء لأغراض الأبحاث خلال العام القادم.تقوم شركة استرو ترا (Astro Terra) بإنتاج وحدة تجريبية للإتصالات قادرة على نقل 155 ميجا بت في الثانية الواحدة وتتكلف في حدود 75000 دولار ويقوم حالياً مركز نظم الحرب البحرية والفضائية بتقييمه لصالح الاستخدام في الاتصالات بين القطع البحرية والساحل ومن الساحل للقطع البحرية. تقوم أيضاً شركة ثرمو تركس (Thermo Trex) بإنتاج نظام مشابه لصالح مكتب الاستطلاع المحمول جواً للأغراض الدفاعية (Defense Airborne Reconnaissance Office) التابع للقوات الجوية الأمريكية وذلك لاستخدامه في الاتصالات من وإلى الطائرات بدون طيار. كما تقوم قيادة الفضاء والدفاع الصاروخي (Army Space And Missile Command) التابعة للجيش الأمريكي بالإشراف على تطوير نظام يطلق عليه النظارات المتحدثة (Talking Binoculars) يستخدم الليزر في نقل البيانات خلال فترات الصمت اللاسلكيأكثر أنواع الليزر شيوعا في الاستخدام هو ليزر (الديود). ومع شيوع نظم التنصت على الاتصالات فإن استخدام الألياف الضوئية في نقل المعلومات يعتبر إحدى وسائل الحماية من التنصت.الان شرح مفصل للالياف البصرية:تركيب الألياف الضوئيةذكرنا أن الألياف الضوئية هي اسلاك رقيقة وطويلة من الزجاج النقي والتي ترتب في حزم تسمى الكابلات الضوئية (Optical Cables) لتستخدم في نقل الإشارات الضوئية لمسافات كبيرة.إذا القينا نظرة فاحصة عن قرب لأحد الألياف الضوئية سنرى أنها تتكون من الأجزاء التالية: -1 القلب أو اللب (Core): وهو مركز النسيج (fiber) وينتقل الضوء عبره. -2 الغلاف (Cladding): وهو المادة الخارجية للنسيج والتي تحيط بالقلب ومهمتها أن تعكس الضوء الخارج من القلب وتعيده إليه. 3) غطاء الحماية (Buffer Coating): وهو عباره عن غطاء من البلاستيك, ومهمته حمابة النسيج الضوئي من الضرر والرطوبة.مئات الالاف من هذه الألياف الضوئية ترتب في حزم على شكل كابلات ضوئية. وهذه الحِزَم تحمى بواسطة الغلاف الخارجي للكابل وتسمى الغلاف (Jacket).تنقسم الألياف الضوئية الى نوعين أساسيين, هما: أ-الألياف ذات النمط المفرد (Single-Mode Fiber). وتكون ذات قلب صغير يصل قطره الى 9 ميكرون, وينقل إشارات الليزر تحت الحمراء ذات الطول الموجي يتراوح مابين 1300 الى 1550 نانوميتر. ب- الألياف متعددة النمط (Multi-Mode Fiber). وهذه يكون القلب فيها ذا قطر أكبر يصل الى 62.5 ميكرون, وتقوم بحمل ونقل الاشارات تحت الحمراء التي يترواح قطرها مابين 850 الى 1300 نانوميتر والصادرة من الصمامات الالكترونية الباعثة للضوء (Light Emitting Diodes LED). بعض الألياف يمكن ان تصنع من البلاستيك ولكن الجزء الاساس فيها (Core) ذو قطر كبير نسبيا (1 مليميتر), وتصلح لنقل الضوء الذي يمكن رؤيته فقط والذي طوله الموجي اكبر من 650 نانوميتر, وهو الضوء المنبعث من الصمام الاكتروني (LED) ولا يصلح هذا النوع من الألياف لنقل الضوء الليزري ( المنبعث من جهاز اطلاق الليزر). وهنا يمكن ان نتساءل كيف يمكن لهذه الألياف ان تنقل الضوء (المعلومات الرقمية). كيف تعمل الألياف الضوئية؟لنفترض اننا نريد ان نرسل حزم من الأشعة الضوئية عبر مسار ما, يمكننا ذلك بأن نوجه الضوء عبر هذا المسار بما أن الضوء يسير عبر خطوط مستقيمة. المشكلة التي يمكن ان تصادفنا هي اذا كان هذا المسار يحتوي على نقطة إنعطاف, ما العمل في مثل هذه الحالة؟ الحل أن نضع مرآة عند نقطة الإنعطاف (Bending) تلك لكي تعكس الضوء عند هذه الزاوية وتعيده الى المسار. كيف إذا كان المسار يحتوي على العديد من نقاط الانعطاف؟ في هذه الحالة يلزمنا مرآة عند كل انعطاف, وتوضع المرآة بزاوية معينة لكي تسمح بإعادة الضوء الى القلب عند كل زاوية على طول المسار. هذا بالظبط ما يحدث داخل الألياف الضوئية.فالضوء يسافر خلال اللب ( المسار) مع قفزات منتظمة من الغلاف (المرآة) عند نقاط الانعطاف حسب ما يسمى بالإنعكاس الداخلي الكلي (Total Internal Reflection), ولأن الغلاف لا يمتص أي من الإشارات الضوئية المتنقلة داخل القلب, فإن الإشارات الضوئية يمكن أن تنتقل لمسافات بعيدة.لكن بعض هذه الإشارات تضعف داخل الألياف – بسبب عدم نقاوة الزجاج وتلوثه مثلاً- والمدى الذي يمكن أن تضعف فيه هذه الإشارات يعتمد على درجة نقاوة الزجاج الذي تصنع منه الألياف وأيضا يعتمد الطول الموجي للضوء المرسل خلاله ( مثلاً 850 نانوميتر يضعف بمقدار يتراوح بين 60 إلى 75 بالمائة لكل كيلو متر) و بعض الألياف يضعف الإشارة فيها بمقدار اقل ( 10% لكل كيلومتر عند الطول الموجي 1550 نانوميتر).نظام الإتصال عبر الألياف الضوئيةيتكون هذا النظام من العناصر التالية: جهاز الارسال (Transmitter): يقوم باستقبال وتوجيه الجهاز المصدر للضوء (LASER or LED) وتشغيله وإيقاف تشغيلِه حسب التسلسل الصحيح, وهكذا يتم توليد الاشارة الضوئية. وجهاز الإرسال يكون قريباً من الألياف الضوئية وقد يحتوي على عدسات ( focused lens) لكي تجمع وتركز الضوء بؤرياً داخل النسيج الضوئي. ضوء الليزر يمتلك قوة أكبر من التي يمتلكها الضوء الصادر من الصمام الباعث ولكنه حساس أكثر للتغير في درجة الحرارة, كما أنه مكِلفٌ أكثر.الألياف الضوئية (Fiber Optics) وهي بيئة التواصل بين المرسل والمستقبل. جهاز إعادة توليد الإشارة (Optical Regenerator): اشرنا في ما سبق إلى حدوث بعض الفقد في الإشارة (Signal Loss) عندما ينتقل الضوء داخل الألياف لمسافات بعيدة -كما يحدث داخل الكابلات البحرية- ولهذا توصَّل المقويات وأجهزة إعادة توليد الإشارة على طول الكابل, لكي تعزز الإشارات الضعيفة. ويتكون هذا الجهاز من الياف ضوئية ذات تغطية خاصة مُطَعمة (doping) , ويعمل هذا القسم من الألياف كمضخة ليزر (pump)؛ فعندما تصل الإشارة الضعيفة الى هذا القسم فإن طاقة الليزر هنا تجعل جزيئات الاشارة الضوئية تعمل كما لو انها مصدر ليزر, فتقوم بإطلاق إشارات ضوئية جديدة وقوية ولكن بنفس خصائص الاشارة الضعيفة القادمة. وهذا يعني ان هذا الجهاز يعمل كما لو انه مضخم ليزري للإشارة القادمة إليه. جهاز الإستقبال (Optical Receiver): يأخذ الاشارة الضوئية الرقمية ويفك تشفيرها ويرسلها كإشارة كهربائية الى المستخدم سواءاَ كان جهاز حاسب أو تلفزيون الكابل أو جهاز هاتف. ويحتوى جهاز الإستقبال الضوئي على خلايا ضوئية (photocells) أو صمامات الكترونية ضوئية (photodiode) لكي تتحسس وتلاحظ الاشارة الضوئية.أفضلية الألياف الضوئية (Advantages )لماذا أحدثت تكنولوجيا الألياف الضوئية ثورة في عالم الإتصالات مقارنة مع الأسلاك التقليدية الأخرى –أسلاك النحاس مثلاَ-؟ السبب يظهر في النقاط التالية: - التكلفة القليلة نسبياَ. - رقة ودقة الألياف . وهذا يقود الى.. - مقدرة عالية على النقل(Higher carrying capacity)بسبب رقة الألياف , فإن الكثير منها يمكن أن تحزم داخل كابل ذو قطر معين أكثر مما لو كانت أسلاك نحاسية في كابل له نفس القطر, مما يعني عدد أكبر من خطوط الهاتف الموصلة او قنوات التلفزيون المتاحة اذا كنا نتكلم عن نظام تلفزيون الكابل. - فقد أقل في الإشارة. - يحمل إشارات ضوئية. بعكس الأسلاك النحاسية التي تحمل إشارات كهربائية, الاشارات الضوئية لا تتداخل (interfere) فيما بينها, مما يعني مكالمات هاتفية أو إستقبال تلفزيوني أوضح. - قدرة إرسال أقل(Low Power). - إشارات رقمية (Digital Signal). الألياف الضوئية صممت أساساَ لنقل الاشارات الرقمية, وهذه مفيدة خاصة في شبكات الحاسب أو الانترنت. - غير قابل للإشتعال. نظراً لعدم مرور تيار كهربائي فيه, لا توجد مخاطر للإحتراق. - أخف وزناً (lightweight). مقارنة مع اسلاك النحاس. وتشغل حيزاً أقل عند تمريرها تحت سطح الأرض. - مرنة (flexible). وبسبب مرونتها العالية وارسالها واستقبالها للضوء فإنها تستخدم في العديد من الكامرات الرقمية لأغراض التنظير الطبي (Medical Imaging), فحص وعمل اللحام داخل الانابيب والمحركات الميكانيكية التي يصعب الوصول إليها في الطائرات, السيارات والصواريخ, كما تستخدم في سباكة الانابيب الضيقة وتفحصها. -
كيف تصنع الألياف الضوئية؟سبق وأن ذكرنا أن المادة الرئيسية في صنعها هي الزجاج -والذي تعتبر الرمال المصدر الأساسي له- نظراً لكثرة التفاصيل في هذا الموضوع سنذكره بإختصار. صناعة الألياف الضوئية تتطلب المرور بعدة مراحل؛ في البداية عمل إسطوانة زجاجية بواسطة عملية الترسيب البخاري الكيميائي المعدل (Modified Chemical Vapor Deposition) وهي عملية معقدة تتم تحت درجة حرارة عالية وظروف كيميائية خاصة, ويتم فيها تفاعل كلوريد السيليكون Sicl4 و كلوريد الجرمانيوم Gecl4 مع فقاعات الأوكسجين, لإنتاج أكسيد السيليكون Sio2 و اكسيد الجرمانيوم Geo2 اللذان يجمعا معاً ويذابا داخل الانابيب لتشكيل الزجاج أو مادة الألياف .ومن ثم يتم سحبها على شكل أسلاك رفيعة وطويلة في الات تشبه المخارط (Lathe) وتكون خاصة ودقيقه جداً, تسمى أبراج سحب الألياف (Fiber Drawing Tower) ويتم تغطية الألياف بطبقة من البلاستيك لحمايتها. بعد ذلك يتم فحص الألياف الضوئية من جوانب عدة مثل: قوة الشد, انتظام قطر القلب وأبعاد أغلفة الحماية, مدى ضعف الاشارة مع زيادة الطول, عرض الحزمة (bandwidth), درجة حرارة التشغيل ومدى الرطوبة وإرتباطهما بضعف الاشارة, وأخيراً قابلية التوصيل تحت الماء.لقد كانت اليمن سبّاقةً إلى استخدام هذه التكنولوجيا عبر وزارة الإتصالات وتقنية المعلومات حيث تمت توسعة شبكة الإتصالات الوطنية في الجمهورية اليمنية بإستخدام الألياف الضوئية التي تتجاوز الآن ال 7000 كيلومتر, بالإضافة الى انه تم إستبدال نظام تراسل الموجة القصيرة (microwave) القياسي بين اليمن والمملكة العربية السعودية بنظام التراسل الرقمي عبر الألياف الضوئية. وتجري لان عملية مربط اليمن بسلطنة عمان بالالياف الضوئية بطول 750 كيلومتر على اراضي اليمني وكذلك أُتيحت الفرصة لعمل شبكة تراسل المعطيات الوطنية والخدمات الرقمية.
حدث خطأ في هذه الأداة

بحث هذه المدونة الإلكترونية

جارٍ التحميل...
حدث خطأ في هذه الأداة

Countdown